Closed Symmetric Monoidal Structure and Flow
نویسندگان
چکیده
The category of flows is not cartesian closed. We construct a closed symmetric monoidal structure which has moreover a satisfactory behavior from the computer scientific viewpoint.
منابع مشابه
The symmetric monoidal closed category of cpo $M$-sets
In this paper, we show that the category of directed complete posets with bottom elements (cpos) endowed with an action of a monoid $M$ on them forms a monoidal category. It is also proved that this category is symmetric closed.
متن کاملTensor and unit for symmetric monoidal categories
Let SMC denote the 2-category with objects small symmetric monoidal categories, 1cells symmetric monoidal functors and 2-cells monoidal natural transformations. It is shown that the category quotient of SMC by the congruence generated by its 2-cells is symmetric monoidal closed. 1 Summary of results Thomason’s famous result claims that symmetric monoidal categories model all connective spectra ...
متن کاملTensor product for symmetric monoidal categories
We introduce a tensor product for symmetric monoidal categories with the following properties. Let SMC denote the 2-category with objects small symmetric monoidal categories, arrows symmetric monoidal functors and 2-cells monoidal natural transformations. Our tensor product together with a suitable unit is part of a structure on SMC that is a 2-categorical version of the symmetric monoidal clos...
متن کاملAdditive closed symmetric monoidal structures on R-modules
In this paper, we classify additive closed symmetric monoidal structures on the category of left R-modules by using Watts’ theorem. An additive closed symmetric monoidal structure is equivalent to an R-module ΛA,B equipped with two commuting right R-module structures represented by the symbols A and B, an R-module K to serve as the unit, and certain isomorphisms. We use this result to look at s...
متن کاملRELATIVE SYMMETRIC MONOIDAL CLOSED CATEGORIES I: AUTOENRICHMENT AND CHANGE OF BASE Dedicated to G. M. Kelly on the occasion of the fiftieth anniversary of the La Jolla Conference on Categorical Algebra, 1965
Symmetric monoidal closed categories may be related to one another not only by the functors between them but also by enrichment of one in another, and it was known to G. M. Kelly in the 1960s that there is a very close connection between these phenomena. In this first part of a two-part series on this subject, we show that the assignment to each symmetric monoidal closed category V its associat...
متن کامل